
Multifluid Software Testing Plan
Level 0: Data holders and Infrastructure

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

June 9, 2004

Contents

1 Scope 2
1.1 System Overview . 2

2 Reference Documents 3

3 Software Test Environment 4

4 Test Identification 5
4.1 General Information . 5

4.1.1 Test Level . 5
4.1.2 Test Classes . 5

4.2 Planned Tests . 6
4.2.1 Test 1 – MFIndexSpace . 6
4.2.2 Test 2 – LevelData MFCellFAB 6
4.2.3 Test 3 – MFRemapper . 6
4.2.4 Test 4 – Multifluid linear operations 7

5 Bug Tracking 8

6 Requirements Traceability 9

1

Chapter 1

Scope

The multifluid code will build heavily on the MFChombo [1] infrastructure, which in turn will
rely on the EBChombo [3] and Chombo [2] software. The software test plan outlined in this
document will focus on the functionality developed to implement the algorithm outlined in
the “Multifluid Algorithm Specification” [4] document; since MFChombo, EBChombo and
Chombo have their own software test plans, it is not necessary to provide for testing the
functionality of the libraries themselves. Note, however, that since the software developed
for the multifluid code will use the MFChombo functionality so extensively, changes and bugs
in the libraries will tend to have effects on the testing results. Multifluid code developers
are kept abreast of developments in the libraries through CVS notification (which sends
e-mail whenever a change is made in the CVS version-control repositories), and through
the ChomboUsers e-mail list.

1.1 System Overview

The multifluid software will implement an algorithm for computing fluid dynamics for
multiple immiscible fluids with surface tension [4]. This software will be built using the
MFChombo software, which implements basic support for computations in a multifluid
environment using an embedded interface description of the multifluid interface. The
MFChombo software is built upon the Chombo and EBChombo software libraries.

2

Chapter 2

Reference Documents

We will refer to the multifluid algorithm described in [4] and the MFChombo software design
document [1].

3

Chapter 3

Software Test Environment

The multifluid software, linked to the MFChombo and Chombo software libraries will be
tested. As new functionality is added and functionality is improved, testing will continue.
It is expected that a given time, the multifluid code will be in sync with the current state
of the MFChombo and Chombo libraries.

This software is primarily intended for use on UNIX/Linux-based systems. In general,
the makefiles used in both Chombo and AMRINS require GNU make (gmake). The
software itself is designed to be run from a shell, with an inputs file providing run-specific
inputs. For data output, the software uses HDF5 available from NCSA. The Chombo and
AMRINS software is written in C++ and Fortran77, so working C++ and F77 compilers
must be available. We generally use the GNU compiler: both gcc 2.95 and 3.1 have been
successfully used to compile this code. In addition, the Chombo Fortran preprocessor uses
PERL. If ChomboVis will be used to examine results, then it must be installed as well.
ChomboVis additionally requires Python and VTK.

We will test the multifluid code in a variety of environments, with a variety of compilers.
Table 3 lists the platforms and compilers we have successfully compiled and run other
Chombo codes:

Testing is done by ANAG personnel, although collaborators have been useful for finding
unintended functionality, primarily in the Chombo libraries themselves.

Platform OS C++ Compiler Fortran Compiler
IBM SP AIX KCC 4.0f, xlC 5.0.2.0 IBM XL Fortran 7.1.1.0

Pentium/AMD Linux gcc 2.95.3+, g77 2.95.3+, PGI Fortran 3.3-2
Intel C++ 6.0 Intel Fortran 5.0.1

Compaq OSF gcc 3.1 Compaq f77 X5.4A-1684-46B5P
Compaq Linux gcc 2.95.3 g77 2.95.3

Table 3.1: Platforms and compilers on which the Chombo codes have been tested

4

Chapter 4

Test Identification

4.1 General Information

The testing for the multifluid libraries will mostly be a set of simple unit tests to verify
functionality.

For much of the functionality which will be developed for this work, the best way to
test whether components are functioning properly is often to do a convergence study. For
example, in the case of an operator such as a gradient or a Laplacian, a field is initialized
on a series of meshes, each a factor of 2 finer than the last. The operator is applied to the
field. If the operator is properly implemented, the result should converge at second-order
rates to an analytic solution.

4.1.1 Test Level

In general, most of the testing outlined in this document will be component testing.
System-level testing will also be carried out on the entire multifluid codes once they have
been fully developed. It is expected that integration testing is not necessary at this time,
because of the small size of the design team.

4.1.2 Test Classes

In general, testing will be structured to evaluate correctness of the code. It is antici-
pated that since the future phases of code development will be focused on performance
enhancement, performance of the code will then be monitored closely, so routine perfor-
mance testing should be unnecessary, while testing for correctness will be important as
changes are made to speed up the code.

5

4.2 Planned Tests

In this section, we outline the tests planned for the multifluid software, broken down by
functional algorithm component. All testing codes will be written in C++.

4.2.1 Test 1 – MFIndexSpace

Testing of MFIndexSpace creation and consistency. Topology graph coarsening. The
ability to create EBISLayout objects for arbitrary DisjointBoxLayout configurations at
arbitrary levels of AMR refinement for every fluid phase.

4.2.2 Test 2 – LevelData MFCellFAB

This require testing the MFCellFAB class for compliance to the templated data holder
LevelData. This testing will require proper functioning of the following MFCellFAB

functions

void copy(const Box& RegionFrom,

const Interval& destInt,

const Box& RegionTo,

const MFCellFAB& source,

const Interval& srcInt);

static int preAllocatable();

int size(const Box& R, const Interval& comps) const ;

void linearOut(void* buf, const Box& R, const Interval& comps) const ;

void linearIn(void* buf, const Box& R, const Interval& comps);

It will also require the proper functioning of the class MFCellFactory function

virtual MFCellFAB* create(const Box& a_box, int a_ncompsIgnored,

const DataIndex& a_dit) const;

4.2.3 Test 3 – MFRemapper

Both remapping functions will be tested:

void remap(const MFIndexSpace& a_sourceMF,

const LevelData<MFCellFAB>& a_source,

const MFIndexSpace& a_destMF,

LevelData<MFCellFAB>& a_dest);

void remap(const MFIndexSpace& a_MF,

const ProblemDomain& a_domainCoar,

const ProblemDomain& a_domainFine,

6

const LevelData<MFCellFAB>& a_source,

const LevelData<MFCellFAB>& a_coarse,

const int& nref,

const int& nghost,

LevelData<MFCellFAB>& a_dest);

4.2.4 Test 4 – Multifluid linear operations

This involves testing algebraic operations (+-*/) as well as norm calculations (max norm,
L1, L2). We will also show an example of calculating the divergence of a vector field (per
fluid phase) in a two phase index space.

7

Chapter 5

Bug Tracking

The multifluid code developers (and the MFChombo and Chombo developers) use the
ttproTMcommercial system for bug tracking. When a bug or unexpected behavior in
the code is identified, a description is entered in the ANAG ttproTMdatabase. As the
bug is investigated and fixed, the description is updated and expanded. Once a bug has
been fixed, the bug report is “closed” in ttpro, but it remains in the database for future
reference if needed.

8

Chapter 6

Requirements Traceability

The requirements traceability matrix is presented in Figure 6.1. ’Test Spec’ references
the tests outlined in the previous section. All tests are run in both debug and optimized
mode, in both 2D and 3D configurations. Tests that have also bee verified in parallel are
indicated.

Req Statement S/W module Test Spec Test Case Verification Parallel
MFIndexSpace MFIndexSpace 1 sphereTest.cpp verified yes
construction GeometryService

Data types EBCellFAB EBFaceFAB 2 mapperTest.cpp verified yes
LevelData<MFCellFAB>

MFCellFactory

Data remapping MFRemapper 3 mapperTest.cpp verified no
Linear Operations EBCellFAB EBFaceFAB 4 levelDivTest.cpp verified yes

LevelData<MFCellFAB>

MFAliasFactory

Table 6.1: Requirements Traceability Matrix

9

Bibliography

[1] P. Colella, D. T. Graves, T. J. Ligocki, D. Martin, D. B. Serafini, and B. Van Straalen.
MFChombo Software Package for Cartesian Grid, Multifluid Applications. unpublished,
2003.

[2] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Serafini,
and B. Van Straalen. Chombo Software Package for AMR Applications - Design
Document. unpublished, 2000.

[3] P. Colella, D. T. Graves, T. J. Ligocki, D. Modiano, D. B. Serafini, and B. Van
Straalen. EBChombo Software Package for Cartesian Grid, Embedded Boundary Ap-
plications. unpublished, 2001.

[4] Dan Martin and Phil Colella. Multifluid algorithm specification. available at
http://davis.lbl.gov/NASA, 2003.

10

